- 9. M. M. Khananashvili, Fiziol. Zh. SSSR, No. 5, 661 (1961).
- 10. T. Ito, M. Hori, K. Yoshida, et al., Epilepsia, 18, 63 (1977).
- 11. E. Costa and P. Greengard (editors), Mechanism of Action of Benzodiazepines, New York (1975).
- 12. J. F. Tallman, J. W. Thomas, and D. W. Gallager, Nature, 274, 383 (1978).
- 13. J. Villablanca, Science, 138, 44 (1962).

EFFECT OF IMMUNIZATION WITH SMALL DOSES OF ANTIGEN ON THE

DEVELOPMENT OF EXPERIMENTAL ATHEROSCLEROSIS

Yu. N. Zubzhitskii and E. G. Alksnis

UDC 616.13-004.6-092.9-092:615.373.6

KEY WORDS: immunization; hyperlipidemia; atherosclerosis.

Some authorities consider that sensitization of man and animals under the influence of foreign information potentiates the development of atherosclerosis [9, 14]. Investigations [12, 13] have shown, for instance, that keeping animals on a high-cholesterol diet, accompanied by immunization with various antigens, leads to more severe changes in the aorta than the high-cholesterol diet alone for the same duration. However, it should be pointed out that other workers [8, 10] have found that injection of heterologous proteins have a protective effect against the development of atherosclerosis.

In the experiments described above antigens of different types were injected in different doses before the beginning of cholesterol feeding or during feeding, so that the results were not at all comparable. Nevertheless the study of the character of the antigen, its dose, and the times of its injection is an essential factor for the understanding of the role of immunization in the development of experimental atherosclerosis.

The object of this investigation was to study the effect of immunization on the development of atherosclerosis in rabbits with established experimental hyperlipidemia, on the grounds that in atherosclerosis the affected individual is frequently exposed to antigen stimulation, and its role in the course of the disease has not yet been explained.

EXPERIMENTAL METHOD

Experiments were carred out on male rabbits weighing 2.5 kg. Atherosclerosis was induced by feeding the animals on a diet containing 500 mg cholesterol daily [2] for 13-15 weeks.

Both autologous γ -globulin obtained by the salting out method [7] and heterologous (human) therapeutic standard γ-globulin were used for immunization. Heterologous γ-globulin was injected subcutaneously during the 6th or 9th week of cholesterol feeding on three successive days (20, 25, and 30 mg protein, respectively). The course of injections was repeated after an interval of 7 days (total dose of antigen injected 150 mg). Since autologous protein is much less antigenic than heterologous, the course of immunization was longer and was not interrupted [4]: Autologous γ-globulin (total dose 163 mg) was injected in the 11th week of cholesterol feeding on ten consecutive days, intravenously in increasing concentrations (from 5 to 30 mg protein), together with mechanically disintegrated yeast cells (Candida albicans; from 1.2 to 12 mg protein, total dose of yeast protein 62 mg). The last injection in both series of experiments contained γ-globulin labeled with 125 [11], and it was given intravenously. A culture of C. albicans was used because it has common antigens with vascular tissue structures [6], so that cross-reacting antibodies injuring the vessel

Department of Biochemistry of Lipids and Atherosclerosis and Department of Immunology and Microbiology, Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. (Presented by Academician of the Academy of Medical Sciences of the USSR A. N. Klimov.) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 90, No. 9, pp. 286-288, September, 1980. Original article submitted August 31, 1979.

TABLE 1. Lipid Content and Atherosclerotic Index of Aortas of Rabbits Immunized with Autologous γ -Globulin and with Disintegrated C. albicans Cells (M \pm m)

	الح			Component detected, mg%			Į.
Group of animals	Number animals	Antigen injected	Time of determination	β- and pre- β-lipopro- tein	total cho- lesterol	triglyc- erides	Athero- sclerotic index, pe cent
1	5		Before immunization On 28th day after beginning of immunization	$1005 \pm 422 \\ 2070 \pm 596$	383±125 748±156	71±41 186±116	24±15
			Increase compared with initial values	2,06±0,33	$1,95\pm0,33$	$2,62\pm0,96$	
2	4	Autologous γ-globu- lin + disintegrated C. albicans	Before immunization On 28th day after beginning of of immunization	881±478 1200±154	317±123 504±118	88±30 110±51	29±25
		O. albicalis	Increase compared with initial values	1,36±0,80*	1,59 <u>±</u> 0,80	1,25±0,49*	
3	5	Disintegrated C. albicans	Before immunization On 28th day after beginning of immunization	725±100 925±310	248±83 432±93	65±33 61±35	23±9
			Increase compared with initial values	1,28±0,14*	1,74±0,48	0,94±0,46*	

^{*}P < 0.05 compared with values in group 1.

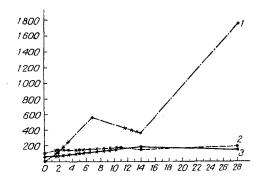
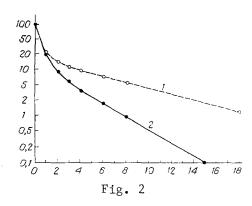


Fig. 1. Skin tests after injection of various antigens into rabbits (area of hyperemia). 1) human γ -globulin; 2) disintegrated C. albicans cells; 3) autologous γ -globulin. Abscissa, time after beginning of immunization (in days); ordinate, area of hyperemia (in mm²); injection of antigen indicated by asterisks.

wall can be induced. The level of sensitization was judged from disappearance of labeled antigen from the blood after 1, 2, 3, 4, 6, 8, 15, and 18 days, and also from the area of hyperemia 14 h after a skin test (1.5-2 mg protein injected intradermally on the 2nd, 7th, 14th, and 28th days after the beginning of immunization).


Before immunization and on the 28th day after its beginning (the time of development of skin reactions of the Arthus phenomenon type) the concentrations of β - and pre- β -lipoproteins in the blood serum of the rabbits were determined by the method in [5]; cholesterol and triglycerides were estimated on the AA-2 automatic analyzer (Technicon).

At the end of the experiment the aorta was removed and stained with Sudan III-IV to calculate the area affected, by Avtandilov's method [1] — the atherosclerotic index.

EXPERIMENTAL RESULTS

The changes in the area of hyperemia in skin tests and in the rate of elimination of labeled antigen from the blood stream (Figs. 1 and 2) indicate the formation of antibodies in response to immunization with human γ -globulin and the absence of an immune response to injection of autologous γ -globulin and of \mathcal{C} . albicans [15].

In experiments with autologous γ -globulin (Table 1), on the 28th day after the beginning of immunization the increase in the concentration of β - and pre- β -lipoproteins, total cholesterol, and triglycerides in the blood serum was not so sharp as in the unimmunized group, in all probability because of injection of the disintegrated \mathcal{C} . albicans cells and not

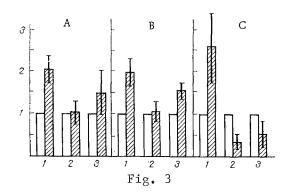


Fig. 2. Concentration of ¹²⁵I-labeled γ -globulin in blood of rabbits after immunization (blood level of ¹²⁵I immediately after injection taken as 100%). 1) Autologous γ -globulin; 2) heterologous γ -globulin. Abscissa, time after injection of labeled antigen (in days); ordinate, percent of antigen in total blood volume.

Fig. 3. Changes in concentration of lipids in blood serum of rabbit fed with cholesterol on immunization with human γ -globulin. Unshaded columns — lipid concentration before immunization (taken as unity); shaded columns — lipid concentration on 28th day after beginning of immunization. A) β - and pre- β -lipoprotein; B) total cholesterol; C) triglycerides. 1) Cholesterol feeding without immunization (n = 5); 2) injection of antigen in 6th week of feeding (n = 4); 3) injection of antigen in 9th week of feeding (n = 8).

of autologous y-globulin.

Immunization of the rabbits with human γ -globulin led to stabilization of the levels of β - and pre- β -lipoproteins and of total cholesterol and to a fall in the triglyceride level in the blood; this effect, moreover, was more marked when the animals were immunized in the 6th week and in the 9th week of cholesterol feeding (Fig. 3). After 13 weeks of cholesterol feeding the atherosclerotic index of the aortas of rabbits receiving injections in the 6th week (13 ± 9%) or in the 9th week (17 ± 7%) was lower than would be expected in the case of feeding by the same scheme but without immunization (about 40 ± 3%).

Injections of small doses of foreign protein into rabbits thus causes a definite protective effect against the development of experimental hyperlipidemia and atherosclerosis; this effect is more clearly defined in the case of earlier immunization relative to the beginning of onset of hyperlipidemia.

LITERATURE CITED

- 1. G. G. Avtandilov, Classification and Planimetric Evaluation of Atherosclerotic Lesions in Blood Vessels [in Russian], Nal'chik (1960).
- K. G. Volkova, Arkh. Biol. Nauk, 30, 269 (1930).
- 3. Yu. V. Ivanovskii, "Immunomorphological investigation of the aorta in rabbits with experimental atherosclerosis," Author's Abstract of Candidate's Dissertation, Leningrad (1978).
- 4. P. N. Kiselev, The Toxicology of Infectious Processes [in Russian], Leningrad (1971).
- 5. A. N. Klimov, T. N. Lovyagina, and E. B. Ban'kovskaya, Lab. Delo, No. 5, 276 (1966).
- 6. V. G. Kubas', in: Proceedings of the 7th Leningrad Mycologic Conference [in Russian], Leningrad (1968), p. 99.
- 7. R. S. Nezlin, The Biochemistry of Antibodies [in Russian], Moscow (1966).
- 8. J. M. Bailey and J. Butler, Adv. Exp. Med. Biol., 1, 433 (1967).
- 9. G. E. Burch, Am. Heart J., 96, 558 (1978).
- 10. S. Gero, J. Gergely, L. Jakab, et al., Lancet, 2, 6 (1959).
- 11. R. W. Helmkamp, M. A. Contreras, and W. F. Bale, Int. J. Appl. Radiat., 12, 737 (1967).
- 12. A. N. Howard, J. Patelski, D. E. Bowyer, et al., Atherosclerosis, 14, 17 (1971).
- 13. L. Levy, Adv. Exp. Med. Biol., 1, 426 (1967).
- 14. R. N. Poston and D. F. Davies, Atherosclerosis, 19, 353 (1974).
- 15. D. W. Talmage, F. J. Dixon, S. C. Bukantz, et al., J. Immunol., 67, 243 (1951).